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TUIML: A Visual Language for Modeling Tangible User Interfaces  
 

TUIML is a visual modeling language for Tangible User Interfaces (TUIs) aimed at 

specifying, analyzing and refining tangible interaction. It consists of an interaction model 

and diagramming techniques for describing the structure and behavior of TUIs in a high-

level technology independent manner. 

 

Here, we explain how to describe the structure, functionality and behavior of TUIs using 

TUIML.  

 

In order to clearly explain the TUIML model and notation, we have selected to use an 

existing TUI as a leading example throughout this paper. We have selected URP as our 

example interface because it is one of the most fully developed and widely known TUI 

systems. It also serves as a good example for a generic interactive surface TUI. 

 

1. Describing the Structure of a TUI using TUIML 

1.1 A set of constructs 

Before a modeling language for TUIs can be defined, it is first necessary to identify the 

set of constructs required to describe the structure and functionality of a large subset of 

TUIs. Our TAC paradigm provides a set of core constructs, which are for a wide range of 

TUIs, what widgets and events are to GUIs. Here we present these constructs and 

introduce a visual notation to represent them.  

 

Our approach is based on the notion that the structure of a TUI can be described as a set 

of relationships between physical objects and digital information. Such relationships 

are defined by the TUI developer at design time and are actually instantiated at run time, 

either by the system or by the user. After a relationship has been instantiated, a user may 

interact with physical objects in order to access or manipulate the digital information they 

represent.  
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We would like to begin by presenting the following constructs: Token, Constraint, and 

TAC.  For each of these constructs we provide a definition and a visual notation that 

represent it. After presenting these constructs we show how to use them to describe TUIs. 

The Urp system will be used as an example throughout both the introduction of the 

TUIML constructs and the ensuing discussion of the TUIML model and notation.  

 

A Token is a graspable physical object that represents digital information or a 

computational function in an application. In other words, a token is a physical object 

that is binded to an application variable. While it is the role of the TUI designer to define 

what type of variable may be binded to a certain physical object. The actual binding of a  

variable to a token could then be performed either by the designer at design time or by 

the user at run-time. A physical object is considered a token only after it is binded to a 

variable. 

 

Users interact with tokens in order to access or manipulate the digital information they 

represent. The physical properties of a token (e.g. size, texture, color etc.) may reflect the 

nature of either the information or the function it represents as well as suggest how it is to 

be manipulated. The physical properties of a token could be computationally augmented 

to provide users with haptic, visual or audible feedback. We refer to tokens that provide 

users with such augmented feedback as active tokens. One of the TUI that uses active 

tokens is the TVE.  

 

For example, we consider the building models in the Urp system as tokens because each 

physical building model represents a virtual building in a computational model of an 

urban environment. Users interact with physical building models in order to create and 

alter this computational model of an urban environment. The physical properties of a 

building model suggest that a user can grab it and then place or remove it from the table. 

Also, the shape of a building model suggests to users how to place the building upon the 

surface (roof at the top, floor at the bottom). We also consider the distance-tool as a token 

in the URP system because, it represents the computational function ‘displayDistance’. 



 3 

Alternatively, in some cases we may consider different body parts as tokens. For 

example, in a TUI where each finger represents a different tune, we consider each finger 

as a token.  

 

 

TUIML depicts tokens using a diagrammatic notation that convey their shape and 

orientation but abstracts away physical properties such as texture, and size. Such 

properties could be specified using a  secondary textual notation. Tokens are depicted as 

simple geometrical shapes that contain a variable. The shapes used to represent a token 

vary: TUIML offers abstract geometrical shapes such as rectangles or circles for 

representing tokens, however, a TUI developer may choose to use shapes that are more 

complex and resemble the actual look of a certain object. Each shape that is used to 

represent a token should contain a graphical symbol that represents the variable binded to 

this token. Variables of type digital information are represented using a small circle while 

variables of type computational function are represented using a small rectangle. Figure 1 

shows TUIML representations of some of the tokens used at URP. 

 

 

Figure 1, TUIML representations of URP tokens. 

TUIML also depicts active tokens.  Figure 2, shows TUIML representations of blocks 

which serve as active tokens augmented with attraction, repulsion and vibration. 

 

Figure 2, active tokens (blocks) augmented with attraction, repulsion and vibration. 
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When a TUI contains several instances of the same token type (e.g. An Urp system that 

contains eight building models), TUIML enables TUI developers to mark the number of 

possible token instances (rather than drawing each of them separately). Figure 3 shows 

how to mark the number of possible token instances.  

 

Figure 3, a building model token that could possibly have n instances. 

 
A Constraint is a physical object that limits the behavior of a token with which it is 

associated. The physical properties of the constraint guide the user in understanding 

how to manipulate the token and how to interpret configurations of token and 

constraints. A constraint limits a token’s behavior in one or more of the following three 

ways:  

1) Affording to the user how to manipulate (and how not to manipulate) an associated.  

2) Confining the physical interaction range of associated tokens.  

3) Serving as a reference frame for the interpretation of token and constraint 

compositions. 

 

For example in the Urp[] system we consider the surface as a constraint because it 

confines the interaction with building models to take place within its dimensions. The 

surface also serves as a reference frame for interpreting the position of buildings models 

and the space between building models. Alternatively, different body parts can be viewed 

as constraints because they constrain movement for example, in terms of reach, and 

rotations. 

 

It is important to note that a certain physical object may serve as a token, a constraint 

or both. For example, we consider a building model as a token. However, in the context 

of measuring distance between two building models, a building model can be considered 

as a constraint because it limits the range of the distance measuring interaction. 
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In order to capture the physical relations between tokens and constraints and hint toward 

how a token could be manipulated in respect to a constraint, TUIML depicts constraints 

using a diagrammatic notation that convey their shape, orientation and size relative to 

tokens. Again, the TUIML notation abstracts away physical properties such as texture, 

color and absolute size, (these can be specified using a secondary textual notation). Table 

1 shows TUIML representations of common and widely used constraint types. For each 

constraint type we present its TUIML representation and list the physical relations 

possible between this constraint and associated tokens.  It is important to note that some 

constraints may be associated with several tokens. For example, a surface could contain 

several building models, the manipulation of each is constrained by the surface but also 

by the presence of the other building models. Thus, for such constraints table 1 lists the 

relations possible between an associated token and the constraint (e.g. presence) as well 

as between all associated tokens (e.g. order). 

 

TUI developers can easily extend TUIML notation by adding constraint types to table 1 

and list the physical relations they support.  

 

A TAC (Token And Constraints) is the relationship between a token and one or more 

constraints. Often, this relationship is temporary. TAC relationships are defined by the 

TUI developer and are created when a token is physically associated with a constraint. 

For example, in the URP system, we consider the combination of a building model upon 

a surface as a TAC. Such a TAC is created whenever a building model (i.e. token) is 

added to the surface (i.e. constraint).  If five buildings are located upon the surface, we 

say that there are five instances of a building model-surface TAC. 

 

Interacting with a TAC involves physically manipulating a token (in a discrete or a 

continuous manner) in respect to its constraints. Such interaction has computational 

interpretation. Thus, the manipulation of a token in respect to its constraints results in 

modifying both the physical and digital states of the system. Manipulation of a token 

outside its constraints has no computational interpretation. Only when a token is 
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associated with constraints does its manipulation have computational interpretation. 

Thus, we can view TAC objects as similar to Widgets because they encapsulate both 

the set of meaningful manipulations users can perform upon a physical object (i.e. 

methods) and the physical relations between tokens and constraints (i.e. state). For 

example a TAC that consists of a building model and a surface encapsulates the 

following manipulations: addBuilding, removeBuilding and moveBuilding as well as the 

following physical relations: position, orientation, proximityto(Building b), 

leftof(Building b) etc. 

 

TAC relationships may have a recursive structure so that a given TAC can serve as a 

token or a constraint for other TACs.  For example, when two building models are 

connected using a distance-measuring tool we can view this configuration as a nested 

TAC, where the first TAC which consists of a distance-measuring tool (i.e. token) 

connected to two building models (i.e. constraints) then serves as a token which is 

constrained by a surface. 
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Constraint 

 

 

Notation 

 

Physical relations 

 

 

Surface 

 

 
 

 

Identity, presence, position (x,y,z), orientation, 

proximity, spatial relations, order, number, group, 

containment.  

 

Rack 

 

 

 

Identity, presence, order, left of, right of, proximity. 

 

 

Indentation 

 

   
 

 

Identity, presence, orientation. 

 

Knob 

 

 
 

 

Identity, position, orientation. 

 

Slider 

 

  

 

Identity, presence, position. 

 

Joint 

 

 

 

Identity, position. 
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Pedal 

 

 

 

Identity, position. 

 

Connector 

 

 

 

 

Identity, connection, left of, right of, above, below. 

 

Table 1, TUIML representations of commonly used constraints.
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Depicting TAC relationships is about capturing configurations, connections, spatial 

layout, shape and orientations of tokens and constraints elements. To accomplish this, we 

combine TUIML elements of tokens and constraints into TACs. For example, figure 4 

depicts two TAC relations within the URP interface. The first, consists of a building 

model and a surface. The building model is marked with an m above its left corner to 

mark that m building models can be located upon this surface. The second TAC, is a 

nested TAC, which consists of a pair of building models connected by a distance-tool 

upon a surface. The dotted line represents that we see the pair of buildings and the 

distance-tool as a separate TAC type that could have n simultaneous instances. Meaning, 

assuming there is a sufficient number of building models and distance-tools, n distance 

measurements can be performed simultaneously. 

 

 

 

 

 

 

 

 

 

Figure 4, TAC relations in the URP interface. 

 

The set of constructs presented in this section is sufficient to describe the functionality 

and structure of a broad range of TUIs .  In the TAC paradigm paper you can find 

examples of several TUIs described in terms of tokens and constraints. 

 

Having presented a set of constructs, we now explain how to use them to describe the 

structure of a TUI.  

 m 

n 
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1.2 Describing the structure of a TUI using TUIML 

To specify the structure of a TUI using TUIML, a TUI developer first defines a set of 

tokens. For each token, she provides a visual representation and a list of properties. Then, 

the TUI developer creates a TAC palette, a table that contains all possible TAC 

relationships of a certain TUI.  

 

The listing of possible TAC relationships is done  in terms of representation, association  

and manipulation. Representation refers to the binding of a token to an application 

variable and the selection of constraints. Association refers to the physical association of 

a token and a set of constraints. Finally, Manipulation, refers to the actions a user may 

perform upon a TAC.  

 

TAC relationships are defined by the developer, but may be instantiated by either the user 

or the developer. Typically, instantiation of a TAC is initiated in response to a discrete 

event. For each TAC which may be instantiated or destroyed at run time, the TUI 

developer must define the discrete actions add and remove, which instantiate or destroy 

the TAC.  These actions may also have additional computational effect on the TUI 

beyond simply instantiating and destroying TACs.  Figure 5 shows the specification of a 

Building Model token. Figure 6 depicts a partial TAC palette for URP.  

 

 

  

 

 

 

 

 

 

Figure 5, specification of a Building Model token. 

 

Building Model 

• Arc style 
• Material 
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Figure 6, a TAC palette for URP. 

 

Having introduced a set of constructs and a mechanism for describing the structure and 

functionality of TUIs, the next section will explain how to model the underlying behavior 

of a TUI using TUIML. 
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2. Describing Behaviors Using TUIML 

 

Current user interface specification languages mainly rely on event-driven models for 

specifying and programming the current generation of graphical user interfaces. 

However, they seem as a wrong model for explicitly specifying continuous and parallel 

behaviors, which are common in TUIs. TUIML is intended to provide TUI developers 

with means for describing the behaviors of a TUI at a high-level, close to the way users 

view such interaction. Thus, as TUIs convey a sense of continuous and parallel 

interaction to users (for example by allowing multiple users to simultaneously move 

multiple objects upon a surface), TUIML is concerned with capturing these interaction 

qualities directly.  

2.1 An Interaction Model for TUIs 

In order to develop a specification language capable of describing the underlying 

behavior of TUIs at a high-level, it is first necessary to identify an interaction model that 

directly addresses continuous and parallel interaction.  

 

TUIML recognizes two fundamental event types that repeat throughout an interaction 

with a TUI and may cause a mode change in an interface: 1) dynamic binding of digital 

information to physical interaction objects (i.e. when users couple information to physical 

objects of their choice at run-time.) 2) physical association of objects (e.g. when users 

physically add/connect physical interaction objects to each other). Both event types cause 

a mode change in an interface because they either alter the meaning of an interaction or 

modify the range of possible interactions. For example, consider the URP system, when a 

second building is added to the surface, the set of possible interaction is modified – users 

can not only add, remove and move a building model but also measure the distance 

between two buildings. Thus, TUIML identifies the basic structure of a tangible dialogue 

as a sequence of modes or high-level states. However, within each high-level state, 

multiple users may interact with the system, in a discrete or continuous manner, in 
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parallel or consecutively. Hence, TUIML views the underlying behavior of a TUI as a 

collection of orthogonal user interactions, each represents a thread of functionality and 

is nested within a high-level state.  

 

This leads to a two-tier model for describing the behavior of TUIs. Our two-tier model 

contains a dialogue tier and an interaction tier:  

The dialogue tier provides an overview of the tangible dialogue structure. It consists of a 

set of high-level states and transitions. A high-level state represents a context in which a 

set of meaningful user interactions may occur (in parallel or consecutively). A transition 

represents an event that changes the context in which interactions take place thus leads to 

a state change. 

  

The interaction tier, consists of a collection of orthogonal user interactions. It provides a 

detailed view of each user interaction that represents a thread of functionality. For each 

such interaction, it describes: its decomposition to parallel and continuous manipulations, 

the interaction objects it employs as well as its affect on the digital and physical states of 

the system. These two tiers, the dialogue tier and the task tier, communicate via a shared 

memory. We represent the dialogue tier using a dialogue diagram and the task tier using 

a collection of interaction diagrams nested within the dialogue diagram. Figure 7 

describe our two-tier model.   

 

Following we further discuss the key concepts of this model and introduce a notation for 

each concept.  
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Figure 7, A two-tier model for describing the behavior of TUIs. The dialogue tier (at the top) 

describes a set of high-level states a TUI can be in. Each high-level state contains a set of 

interactions that can be performed when the system is in this state.  A ‘zoom in’ into the dialogue 

tier reveals the interaction tier: a collection of individual interaction diagrams nested within each 

state.  Each of these diagrams is represented by a triangle. The internal structure of an interaction 

diagram will be explained later in this section.  

2.2 The dialogue-tier 

The dialogue-tier provides a high-level overview of a tangible dialogue structure. It 

consists of a set of high-level states and a set of transitions.  The dialogue diagram draws 

upon the Statechart notation, a state-based notation that enables to express concurrency 

within a state. 

 

High-level States 

Rather than describing the state of a TUI at every turn, what would make the dialogue 

specification excessively complex and would lead to a state explosion, a high-level state 
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captures a context in which a certain set of user interactions are meaningful. These user 

interactions are orthogonal and could be performed in parallel assuming their pre-

conditions are satisfied. 

 

For example, we identify three high-level states in the URP system: no building models 

located upon the surface, one building model located upon the surface and at least two 

buildings located upon the surface. When no building models are located upon the 

surface there are no meaningful interactions that users can perform beside adding a 

building to the surface what cause to the system to move to a  new state: a single building 

is located upon the surface. In this state users can move the building model, change its 

orientation, perform a wind simulation, change the building model material and update 

the digital shadow of the building by changing the time of the day in the urban model. 

When two or more buildings are located upon the surface, users can perform all the 

interactions listed above as well as measure and change the distance between two 

buildings.  

 

Formally, a high level state encapsulates three elements: an internal state, a physical state 

and a set of meaningful interactions.  Table 2 summarizes the elements included in a 

high-level state.  

 

 
Element Description 

Internal state A vector of the current values of application 

variables. 

Physical state A vector of instantiated TAC relationships.  

Interactions A set of interactions that could be performed in 

parallel or consecutively within this state.  

Table 2 

 

In the TUIML dialogue-diagram, a high-level state is denoted by a rounded rectangle 

symbol and each of the meaningful interactions contained in a state is denoted by a 
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triangle symbol separated from others by a dashed line. Figure 8 shows a TUIML 

representation of a high level state. When informally modeling a dialogue tier it is 

sufficient to visually represent a high-level state and the set of meaningful interactions it 

contains. However, for a more detailed specification a table that describes the internal 

and physical states should accompany the visual description. 

 

 
 

Figure 8,  a visual representation of an URP high-level state. 

 

Similar to a Statechart, a dialogue diagram may have initial and final states. An initial 

state is the one that the TUI is in when it is first activated. A final state is one in which no 

transitions lead out of. 

 

Transitions 

A transition between high-level states occurs as a result of a discrete event that changes 

the context in which interactions with a TUI take place. A transition is associated with an 

event and may also be associated with a condition and a response. In order for a transition 

to ‘fire’, a discrete event should occur and its associated condition must be true. In 

addition to causing a high-level state change, an event that is associated with a transition 

may cause a response such invocation of application functions combined with digital and 

physical output. 

 

A response is a result of the transition event. For example, when a building is added to 

the URP surface the system may move to a new state (depends how many building are 
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already located upon the URP surface) and a digital shadow for the new building model 

is projected upon the surface.  

 

In a TUI, several sources may produce transition events. Thus, TUIML introduces four 

transition types, based on their source.  TUIML represents a transition as a labeled arrow. 

Table 3 introduces the graphical representation for each transition type. Figure 9 shows 

the format for transition labels. 

 

Source Description Representation 

Timer Generated by a timer. 

 

 

System Generated by the system. 

 

 

User Interaction Generated intentionally by a 

user. 

 

Implicit 

Interaction 

Generated implicitly by a user.  

Table 3, representations of different transition types. 

 

event  C: condition / R: response 

Figure 9, format for transition labels. 

 

Having established a notation for a dialogue diagram, figure 10 shows the dialogue 

diagram for the URP system. The diagram consists of three high-level states: an initial 

state where no building models are located upon the surface, a state where one building 

model is located upon the surface and a state where at least two building models are 

located upon the surface. Each of these high-level states contains a set of interactions that 

users can complete (in sequence or in parallel) while the system is within this state. In the 

URP system the transitions from one high-level state to another  (or back to the same 

state) are all a result of user interaction.  
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Figure 10, a dialogue diagram for URP. 

 

 

2.3 The Interaction-Tier  
While the dialogue-tier provides an overview of the tangible dialogue structure, the 

interaction-tier provides a detailed view of each user interaction that represents a 

particular thread of functionality.  

 

A tangible interaction typically consists of a set of discrete actions and continuous 

manipulations performed consecutively or in parallel upon physical interaction objects. 

For example, the interaction aimed at distance measuring in the URP interface consists of 

a sequence of two discrete actions: connecting two buildings using a distance-tool (results 

in displaying the distance between the two buildings) and disconnecting the buildings 

when the distance display is no longer required. Alternatively, to drive a car down the 

road users perform two continuous manipulations in parallel: controlling the steering 

wheel and adjusting the gas pedal. Some tasks involve both discrete actions and 

continuous manipulations. For example, when a user shoots an enemy while flying an 

airplane in a video game.   
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The interaction-tier depicts the decomposition of tangible interactions into a set of 

discrete actions and continuous manipulations and specifies the temporal relations 

between them. For each action or manipulation (discrete or continuous) the diagram 

describes the pre-conditions needed to be satisfied in order for it to take place,   and the 

post-conditions it causes in terms of its affect on the digital and physical states of the 

system.  

 

It is important to note that during different phases of the design process it is helpful to 

model an interaction using different granularity levels. For example, early in the design 

process the task of distance measuring may be modeled using low granularity so that the 

first action users perform in order to display the distance between two buildings is 

connecting them using the distance tool. Alternatively, later in the design process when 

implementation constraints are known, applying higher granularity will divide the action 

of connecting two buildings into two discrete actions: touching the first building using 

the distance tool and then touching the second building.  

 

TUIML represents the interaction-tier as a collection of interaction diagrams each nested 

within a high-level state. It depicts interaction diagrams using a graphical notation that 

directly captures parallel and continuous interaction as well as express both physical and 

digital states of the system. The TUIML notation is inspired from Petri nets  because Petri 

nets provides an appealing graphical representation for specifying systems that exhibit 

parallel activities.  

 

The basic structure of a TUIML interaction diagram is similar to a Petri net. It comprises 

two types of nodes: places and transitions that are connected by flow relations (i.e. direct 

arcs). Places represent conditions in terms of physical or digital configurations and 

transitions represent discrete events. However, we modified and enriched the PN notation 

in several ways. Among these changes:  

1. Places are represented using a special notation capable of expressing relationships 

between physical objects. 

2. An additional node type is introduced in order to represent continuous 
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manipulations. 

3. The diagram is divided into two areas that represent the physical and the digital 

worlds correspondingly. 

 

Following we describe the structure of an interaction diagram in further detail. In order to 

clearly introduce the different elements of the interaction diagram we will use the URP 

wind-simulation interaction as a leading example.  Figure 11 shows the wind-simulation 

interaction diagram.  

 

 

Figure 11, an interaction diagram for URP’s wind simulation. 
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Places, transitions and flow relations 

In the modeling of a tangible interaction, transitions represent discrete events. For an 

event to occur, it may be necessary for certain pre-conditions to hold. The occurrence of 

an event may cause its pre-conditions to cease to hold and may cause post-conditions to 

become true. In an interaction diagram, a transition is represented using a box, the inputs 

of a transition are the preconditions of the corresponding event; the outputs are the post-

conditions. The occurrence of an event corresponds to the ‘firing‘ of the corresponding 

transition. The wind-simulation interaction diagram (see figure 11) contains two 

transitions: addWindTool and removeWindTool. 

 

Pre and post conditions are represented by places. In a TUI, pre and post conditions may 

relate to both the physical state of the system and the digital state of the system. For 

example consider the transition addWindTool in the wind-simulation interaction diagram 

(see figure X). In order for this transition to result in the activation of the wind simulation 

the following pre-conditions must be true: 1) the URP surface should contain at least one 

building 2) The URP system should contain a wind-tool, but it shouldn’t be located upon 

the surface 3) the digital flag ‘windSimulationOn’ should be set to false. This transition 

also causes the following post-conditions: a physical wind interaction object is located 

upon the surface, the digital flag ‘windSimulationOn’ is set to true, and a graphical 

visualization of a wind flow is displayed upon the surface.  

 

To express pre and post conditions that relate to both physical and digital configurations, 

TUIML represents places using a mixed notation. Conditions that relate to the physical 

state of the TUI are expressed in terms of tokens, constraints and TAC objects  and 

denoted using their graphical representations. While conditions that relate to the digital 

state of the system are represented using text enclosed within an oval node. In the 

example of the wind-simulation interaction (see figure 11), the physical pre-conditions 

for the addWindtool transition are modeled using a TAC object that represents building 

models upon a surface, and a token object that represents a wind-tool. The digital pre-

condition are specified within an oval node. Similarly, the physical post-condition is 

modeled using a TAC object that contains building models as well as wind-tool upon a 
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surface while the digital post-conditions are textually specified within an oval node. Note 

that physical conditions are depicted within the physical-world area while digital 

conditions are depicted within the digital-world area. 

 

Places that represent physical conditions could be given a marking. A marking is a 

number that is specified in the upper left corner of a token or TAC objects and signifies 

how many instances of that object may exist in the TUI system. Consider the TAC object 

that serves as pre-condition for the addWindTool transition (see figure 11). It consists of 

a building model token upon a surface. Its building model token has a marking of n, 

expressing that n building models could be located upon this surface assuming n is bigger 

than one and smaller than ten. The wind-tool, which also serve as a pre-condition for the 

addWindTool transition, has a marking of 1. The overall marking of an interaction 

diagram reflects its state. If not specified otherwise, the default marking of places is one. 

 

Transitions are connected to places using Flow relations, which are represented by 

directed arcs. When a flow relation connects a place that represents a physical condition 

to a transition, it may be associated with a number (i.e. weight function). This weight 

function expresses how many instances of a certain physical interaction object are 

required in order to fire the associated transition. For example, in order to fire the 

transition addWindTool (see figure 11) exactly one wind-tool is required. If no weight  is 

specified, a default weigh value of one is applied. 

 

During the simulation (execution) of an interaction diagram, its initial marking changes 

according to the sequence of fired transitions, to reflect changes in the diagram state. For 

example, following the firing of the transition addWindTool, the wind-tool is located 

upon the surface. Thus, the initial marking of the interaction diagram that reflects the 

availability of one  ‘free’ wind-tool changes to reflect that in the current state of the 

system there is no available wind-tool. Naturally, it implies that no two wind simulations 

could be performed in parallel. 

 

Finally, transitions that conclude the sequence of firing transitions, are connected to a 
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special output place called ‘recycler’ that has no outgoing flow relations. Following the 

execution of such a transition, the initial marking of the interaction diagram is recovered, 

and the initial pre-conditions are set to true. Meaning all physical objects that were 

employed during the execution of this interaction are released. For example, the transition 

removeWindTool is connected to a recycler state. Following its execution the wind-tool 

is removed from the surface and the flag windSimulationOn is set to false. Thus, users 

can perform the wind simulation interaction once again. 

 

Having described the basic structure of an interaction diagram, we can now explain how 

we integrate continuous interactions into the interaction diagram structure. 

 

Manipulations 

Continuous manipulations give users continuous feedback in response to continuous 

input. Hence, they are not appropriately modeled by transitions, which represent discrete 

events. In order to model continuous interaction explicitly within the TUIML interaction 

diagram, we introduced additional node type to the diagram called a manipulation that is 

depicted using an hexagon. 

 

Similar to a discrete event, a manipulation may have pre-conditions related to both the 

physical and digital states of the system. The continuous manipulation may last while 

these pre-conditions hold. A manipulation may also produce continuous digital output 

and change in the digital state of the system.  Thus, it may be connected, using directed 

arcs, to places that represent digital configurations. While a manipulation may produce 

physical output, it cannot change the physical state of the system in terms of tokens and 

constraints configurations, because such configurations are created or destroyed when 

physical objects are added to or removed from other physical objects (i.e, in response to 

discrete events).  Rather, a continuous manipulation occurs within a particular 

configuration of tokens and constraints. Thus, places that represent physical conditions 

serve as both pre and post-conditions of an associated manipulation and are connected to 

a manipulation node using a bi-directional arc. To emphasize the continuous link between 

a manipulation node, its pre and post conditions, TUIML uses specialized thicker arcs to 
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represent bidirectional, ingoing or outgoing continuous flow relations. 

 

In the wind-manipulation interaction diagram (see figure 11), there is one manipulation 

node, that refers to the continuous manipulation moveWindTool. Following the execution 

of the addWindTool transition, a wind tool is located upon the surface. Users can then 

continuously move the wind tool upon the surface in order to change the direction of the 

wind. A pre-condition for this manipulation is the physical configuration described as a 

TAC, which contains building models and a wind-tool upon a surface. The movement of 

the wind-tool upon the surface does not change this physical configuration (it only 

changes the position of the wind-tool in respect of the surface), thus, a bi-directional arc 

connects the moveWindTool manipulation to the place, which represents this physical 

configuration.  The moveWindTool manipulation causes a continuous update of the 

digital wind simulation display. This is specified within a place that is connected to the 

moveWindTool manipulation using an outgoing arc. 

 

 

 A manipulation may also fire a transition in response to a certain variable crossing a 

threshold. For example when a users slides an object away from another object, the 

corresponding manipulation fires an event as a result of the distance between the objects 

crossing a certain threshold. In such cases, the manipulation node is connected using an 

outgoing flow relation (i.e. an outgoing arc) to a transition that represents the threshold-

crossing event.  

 

 

2.4 Summary 
The two-tier model and diagrams presented here are aimed to enable TUI developers to 

describe and discuss a TUI behavior from a point of view closer to the users’ rather than 

to the exigencies of implementation. The dialogue diagram is intended to bring out the 

big picture, and assist TUI developers to assure that functionality is complete and correct 

prior to implementing a fully functional prototype. An interaction diagram allows TUI 

developers to focus on a specific thread of functionality. It provide users with means for 
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addressing design concerns related to parallel interaction such as multiple access points  

and visibility, understanding the consequences of users’ input on both the digital and 

physical states of the system as well as considering issues related to combined discrete 

and continuous inputs.  The comparison of interaction diagrams allows TUI developers to 

consider alternative designs and create consistency of interaction syntax within an 

application. 

3. An Example: The Marble Answering Machine 

One of the earliest illustrations of interlinking the physical and digital worlds is provided 

in the design of the Marble Answering Machine (MAM) []. It was designed and 

prototyped by Durrell Bishop, while a student at the Royal College of Art, in order to 

explore ways in which computing can be taken off the desk and integrated into every day 

objects. However, it was never  fully implemented. We have selected the Marble 

Answering Machine as an example, because it is a simple and elegant example of a TUI. 

 

 In the Marble Answering Machine, marbles represents incoming voice messages.  To 

play a message, a user grabs a message (marble) and places it in an indentation on the 

machine. To return a call, the user places the marble within an indentation in an 

augmented telephone.  To store a message, the user places a marble in a dedicated storage 

saucer – different users may have different saucers.  

 

Figure 12, presents the TAC palette for the MAM. Visually specifying the MAM 

structure highlights the use of physical constraints to enforce physical syntax (see X).  

For example, TAC 2, consists of a marble and a replay indentation.  The shape of the 

replay indentation affords the placement of a single marble within its dimensions. 

Meaning, only a single message could be played at a certain time. The visual 

specification of a TAC could also assist in comparing alternative designs. For example, 

within the scope of the MAM, we can compare the structure of TAC 1, a marble within a 

message queue, with the structure of TAC 4, a marble within a storage saucer. While the 

physical properties of a rack (used for representing the message queue) imply the 

following relations: presence, order and number, the physical properties of a storage 
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saucer only imply the relations of presence and number. As such, a user approaching his 

storage saucer is not aware to the order in which his incoming messages have arrived. 

Replacing the storage saucer with other constraint types provided by TUIML, such as a 

rack or a series of indentations allows the TUI developer to consider alternative designs.  

 
Figure 12, MAM TAC palette. 

 

Figure 13, presents the dialogue diagram of the MAM interface. This diagram depicts 

two different transitions types: those generated by system events (e.g. incoming calls) and 

those generated by users (e.g. remove marble).   

 

Comparing the play and call back interaction diagrams (figure 14 and 15), highlights a 

consistent syntax across these two interactions. Also, considering the interaction objects 

required for completing each of those interactions (a marble and a play indentation for 

playing, a message and a marble and a call back indentation for calling back) shows that 

these two interactions could take place in parallel assuming the MAM contains at least 

two different messages.  
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Figure 13, MAM dialogue diagram. 

 

 

Figure 14, call back interaction diagram. Figure 15, play interaction diagram. 


